3.1.37 \(\int \csc ^3(c+d x) (a+b \tan (c+d x))^3 \, dx\) [37]

3.1.37.1 Optimal result
3.1.37.2 Mathematica [B] (verified)
3.1.37.3 Rubi [A] (verified)
3.1.37.4 Maple [A] (verified)
3.1.37.5 Fricas [B] (verification not implemented)
3.1.37.6 Sympy [F]
3.1.37.7 Maxima [A] (verification not implemented)
3.1.37.8 Giac [B] (verification not implemented)
3.1.37.9 Mupad [B] (verification not implemented)

3.1.37.1 Optimal result

Integrand size = 21, antiderivative size = 141 \[ \int \csc ^3(c+d x) (a+b \tan (c+d x))^3 \, dx=-\frac {a^3 \text {arctanh}(\cos (c+d x))}{2 d}-\frac {3 a b^2 \text {arctanh}(\cos (c+d x))}{d}+\frac {3 a^2 b \text {arctanh}(\sin (c+d x))}{d}+\frac {b^3 \text {arctanh}(\sin (c+d x))}{2 d}-\frac {3 a^2 b \csc (c+d x)}{d}-\frac {a^3 \cot (c+d x) \csc (c+d x)}{2 d}+\frac {3 a b^2 \sec (c+d x)}{d}+\frac {b^3 \sec (c+d x) \tan (c+d x)}{2 d} \]

output
-1/2*a^3*arctanh(cos(d*x+c))/d-3*a*b^2*arctanh(cos(d*x+c))/d+3*a^2*b*arcta 
nh(sin(d*x+c))/d+1/2*b^3*arctanh(sin(d*x+c))/d-3*a^2*b*csc(d*x+c)/d-1/2*a^ 
3*cot(d*x+c)*csc(d*x+c)/d+3*a*b^2*sec(d*x+c)/d+1/2*b^3*sec(d*x+c)*tan(d*x+ 
c)/d
 
3.1.37.2 Mathematica [B] (verified)

Leaf count is larger than twice the leaf count of optimal. \(897\) vs. \(2(141)=282\).

Time = 7.38 (sec) , antiderivative size = 897, normalized size of antiderivative = 6.36 \[ \int \csc ^3(c+d x) (a+b \tan (c+d x))^3 \, dx=\frac {3 a b^2 \cos ^3(c+d x) (a+b \tan (c+d x))^3}{d (a \cos (c+d x)+b \sin (c+d x))^3}-\frac {3 a^2 b \cos ^3(c+d x) \cot \left (\frac {1}{2} (c+d x)\right ) (a+b \tan (c+d x))^3}{2 d (a \cos (c+d x)+b \sin (c+d x))^3}-\frac {a^3 \cos ^3(c+d x) \csc ^2\left (\frac {1}{2} (c+d x)\right ) (a+b \tan (c+d x))^3}{8 d (a \cos (c+d x)+b \sin (c+d x))^3}+\frac {\left (-a^3-6 a b^2\right ) \cos ^3(c+d x) \log \left (\cos \left (\frac {1}{2} (c+d x)\right )\right ) (a+b \tan (c+d x))^3}{2 d (a \cos (c+d x)+b \sin (c+d x))^3}+\frac {\left (-6 a^2 b-b^3\right ) \cos ^3(c+d x) \log \left (\cos \left (\frac {1}{2} (c+d x)\right )-\sin \left (\frac {1}{2} (c+d x)\right )\right ) (a+b \tan (c+d x))^3}{2 d (a \cos (c+d x)+b \sin (c+d x))^3}+\frac {\left (a^3+6 a b^2\right ) \cos ^3(c+d x) \log \left (\sin \left (\frac {1}{2} (c+d x)\right )\right ) (a+b \tan (c+d x))^3}{2 d (a \cos (c+d x)+b \sin (c+d x))^3}+\frac {\left (6 a^2 b+b^3\right ) \cos ^3(c+d x) \log \left (\cos \left (\frac {1}{2} (c+d x)\right )+\sin \left (\frac {1}{2} (c+d x)\right )\right ) (a+b \tan (c+d x))^3}{2 d (a \cos (c+d x)+b \sin (c+d x))^3}+\frac {a^3 \cos ^3(c+d x) \sec ^2\left (\frac {1}{2} (c+d x)\right ) (a+b \tan (c+d x))^3}{8 d (a \cos (c+d x)+b \sin (c+d x))^3}+\frac {b^3 \cos ^3(c+d x) (a+b \tan (c+d x))^3}{4 d \left (\cos \left (\frac {1}{2} (c+d x)\right )-\sin \left (\frac {1}{2} (c+d x)\right )\right )^2 (a \cos (c+d x)+b \sin (c+d x))^3}+\frac {3 a b^2 \cos ^3(c+d x) \sin \left (\frac {1}{2} (c+d x)\right ) (a+b \tan (c+d x))^3}{d \left (\cos \left (\frac {1}{2} (c+d x)\right )-\sin \left (\frac {1}{2} (c+d x)\right )\right ) (a \cos (c+d x)+b \sin (c+d x))^3}-\frac {b^3 \cos ^3(c+d x) (a+b \tan (c+d x))^3}{4 d \left (\cos \left (\frac {1}{2} (c+d x)\right )+\sin \left (\frac {1}{2} (c+d x)\right )\right )^2 (a \cos (c+d x)+b \sin (c+d x))^3}-\frac {3 a b^2 \cos ^3(c+d x) \sin \left (\frac {1}{2} (c+d x)\right ) (a+b \tan (c+d x))^3}{d \left (\cos \left (\frac {1}{2} (c+d x)\right )+\sin \left (\frac {1}{2} (c+d x)\right )\right ) (a \cos (c+d x)+b \sin (c+d x))^3}-\frac {3 a^2 b \cos ^3(c+d x) \tan \left (\frac {1}{2} (c+d x)\right ) (a+b \tan (c+d x))^3}{2 d (a \cos (c+d x)+b \sin (c+d x))^3} \]

input
Integrate[Csc[c + d*x]^3*(a + b*Tan[c + d*x])^3,x]
 
output
(3*a*b^2*Cos[c + d*x]^3*(a + b*Tan[c + d*x])^3)/(d*(a*Cos[c + d*x] + b*Sin 
[c + d*x])^3) - (3*a^2*b*Cos[c + d*x]^3*Cot[(c + d*x)/2]*(a + b*Tan[c + d* 
x])^3)/(2*d*(a*Cos[c + d*x] + b*Sin[c + d*x])^3) - (a^3*Cos[c + d*x]^3*Csc 
[(c + d*x)/2]^2*(a + b*Tan[c + d*x])^3)/(8*d*(a*Cos[c + d*x] + b*Sin[c + d 
*x])^3) + ((-a^3 - 6*a*b^2)*Cos[c + d*x]^3*Log[Cos[(c + d*x)/2]]*(a + b*Ta 
n[c + d*x])^3)/(2*d*(a*Cos[c + d*x] + b*Sin[c + d*x])^3) + ((-6*a^2*b - b^ 
3)*Cos[c + d*x]^3*Log[Cos[(c + d*x)/2] - Sin[(c + d*x)/2]]*(a + b*Tan[c + 
d*x])^3)/(2*d*(a*Cos[c + d*x] + b*Sin[c + d*x])^3) + ((a^3 + 6*a*b^2)*Cos[ 
c + d*x]^3*Log[Sin[(c + d*x)/2]]*(a + b*Tan[c + d*x])^3)/(2*d*(a*Cos[c + d 
*x] + b*Sin[c + d*x])^3) + ((6*a^2*b + b^3)*Cos[c + d*x]^3*Log[Cos[(c + d* 
x)/2] + Sin[(c + d*x)/2]]*(a + b*Tan[c + d*x])^3)/(2*d*(a*Cos[c + d*x] + b 
*Sin[c + d*x])^3) + (a^3*Cos[c + d*x]^3*Sec[(c + d*x)/2]^2*(a + b*Tan[c + 
d*x])^3)/(8*d*(a*Cos[c + d*x] + b*Sin[c + d*x])^3) + (b^3*Cos[c + d*x]^3*( 
a + b*Tan[c + d*x])^3)/(4*d*(Cos[(c + d*x)/2] - Sin[(c + d*x)/2])^2*(a*Cos 
[c + d*x] + b*Sin[c + d*x])^3) + (3*a*b^2*Cos[c + d*x]^3*Sin[(c + d*x)/2]* 
(a + b*Tan[c + d*x])^3)/(d*(Cos[(c + d*x)/2] - Sin[(c + d*x)/2])*(a*Cos[c 
+ d*x] + b*Sin[c + d*x])^3) - (b^3*Cos[c + d*x]^3*(a + b*Tan[c + d*x])^3)/ 
(4*d*(Cos[(c + d*x)/2] + Sin[(c + d*x)/2])^2*(a*Cos[c + d*x] + b*Sin[c + d 
*x])^3) - (3*a*b^2*Cos[c + d*x]^3*Sin[(c + d*x)/2]*(a + b*Tan[c + d*x])^3) 
/(d*(Cos[(c + d*x)/2] + Sin[(c + d*x)/2])*(a*Cos[c + d*x] + b*Sin[c + d...
 
3.1.37.3 Rubi [A] (verified)

Time = 0.36 (sec) , antiderivative size = 141, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.143, Rules used = {3042, 4000, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \csc ^3(c+d x) (a+b \tan (c+d x))^3 \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {(a+b \tan (c+d x))^3}{\sin (c+d x)^3}dx\)

\(\Big \downarrow \) 4000

\(\displaystyle \int \left (a^3 \csc ^3(c+d x)+3 a^2 b \csc ^2(c+d x) \sec (c+d x)+3 a b^2 \csc (c+d x) \sec ^2(c+d x)+b^3 \sec ^3(c+d x)\right )dx\)

\(\Big \downarrow \) 2009

\(\displaystyle -\frac {a^3 \text {arctanh}(\cos (c+d x))}{2 d}-\frac {a^3 \cot (c+d x) \csc (c+d x)}{2 d}+\frac {3 a^2 b \text {arctanh}(\sin (c+d x))}{d}-\frac {3 a^2 b \csc (c+d x)}{d}-\frac {3 a b^2 \text {arctanh}(\cos (c+d x))}{d}+\frac {3 a b^2 \sec (c+d x)}{d}+\frac {b^3 \text {arctanh}(\sin (c+d x))}{2 d}+\frac {b^3 \tan (c+d x) \sec (c+d x)}{2 d}\)

input
Int[Csc[c + d*x]^3*(a + b*Tan[c + d*x])^3,x]
 
output
-1/2*(a^3*ArcTanh[Cos[c + d*x]])/d - (3*a*b^2*ArcTanh[Cos[c + d*x]])/d + ( 
3*a^2*b*ArcTanh[Sin[c + d*x]])/d + (b^3*ArcTanh[Sin[c + d*x]])/(2*d) - (3* 
a^2*b*Csc[c + d*x])/d - (a^3*Cot[c + d*x]*Csc[c + d*x])/(2*d) + (3*a*b^2*S 
ec[c + d*x])/d + (b^3*Sec[c + d*x]*Tan[c + d*x])/(2*d)
 

3.1.37.3.1 Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4000
Int[sin[(e_.) + (f_.)*(x_)]^(m_.)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(n 
_.), x_Symbol] :> Int[Expand[Sin[e + f*x]^m*(a + b*Tan[e + f*x])^n, x], x] 
/; FreeQ[{a, b, e, f}, x] && IntegerQ[(m - 1)/2] && IGtQ[n, 0]
 
3.1.37.4 Maple [A] (verified)

Time = 4.12 (sec) , antiderivative size = 140, normalized size of antiderivative = 0.99

method result size
derivativedivides \(\frac {b^{3} \left (\frac {\sec \left (d x +c \right ) \tan \left (d x +c \right )}{2}+\frac {\ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{2}\right )+3 a \,b^{2} \left (\frac {1}{\cos \left (d x +c \right )}+\ln \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right )\right )+3 a^{2} b \left (-\frac {1}{\sin \left (d x +c \right )}+\ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )\right )+a^{3} \left (-\frac {\csc \left (d x +c \right ) \cot \left (d x +c \right )}{2}+\frac {\ln \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right )}{2}\right )}{d}\) \(140\)
default \(\frac {b^{3} \left (\frac {\sec \left (d x +c \right ) \tan \left (d x +c \right )}{2}+\frac {\ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{2}\right )+3 a \,b^{2} \left (\frac {1}{\cos \left (d x +c \right )}+\ln \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right )\right )+3 a^{2} b \left (-\frac {1}{\sin \left (d x +c \right )}+\ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )\right )+a^{3} \left (-\frac {\csc \left (d x +c \right ) \cot \left (d x +c \right )}{2}+\frac {\ln \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right )}{2}\right )}{d}\) \(140\)
risch \(-\frac {i {\mathrm e}^{i \left (d x +c \right )} \left (3 i a^{3} {\mathrm e}^{2 i \left (d x +c \right )}+3 i a^{3} {\mathrm e}^{4 i \left (d x +c \right )}+6 a^{2} b \,{\mathrm e}^{6 i \left (d x +c \right )}+b^{3} {\mathrm e}^{6 i \left (d x +c \right )}+i a^{3} {\mathrm e}^{6 i \left (d x +c \right )}+6 i a \,b^{2} {\mathrm e}^{6 i \left (d x +c \right )}+6 a^{2} b \,{\mathrm e}^{4 i \left (d x +c \right )}-3 b^{3} {\mathrm e}^{4 i \left (d x +c \right )}+i a^{3}+6 i a \,b^{2}-6 a^{2} b \,{\mathrm e}^{2 i \left (d x +c \right )}+3 b^{3} {\mathrm e}^{2 i \left (d x +c \right )}-6 i a \,b^{2} {\mathrm e}^{2 i \left (d x +c \right )}-6 i a \,b^{2} {\mathrm e}^{4 i \left (d x +c \right )}-6 a^{2} b -b^{3}\right )}{d \left ({\mathrm e}^{2 i \left (d x +c \right )}+1\right )^{2} \left ({\mathrm e}^{2 i \left (d x +c \right )}-1\right )^{2}}+\frac {3 b \ln \left ({\mathrm e}^{i \left (d x +c \right )}+i\right ) a^{2}}{d}+\frac {b^{3} \ln \left ({\mathrm e}^{i \left (d x +c \right )}+i\right )}{2 d}+\frac {a^{3} \ln \left ({\mathrm e}^{i \left (d x +c \right )}-1\right )}{2 d}+\frac {3 a \ln \left ({\mathrm e}^{i \left (d x +c \right )}-1\right ) b^{2}}{d}-\frac {3 b \ln \left ({\mathrm e}^{i \left (d x +c \right )}-i\right ) a^{2}}{d}-\frac {b^{3} \ln \left ({\mathrm e}^{i \left (d x +c \right )}-i\right )}{2 d}-\frac {a^{3} \ln \left ({\mathrm e}^{i \left (d x +c \right )}+1\right )}{2 d}-\frac {3 a \ln \left ({\mathrm e}^{i \left (d x +c \right )}+1\right ) b^{2}}{d}\) \(443\)

input
int(csc(d*x+c)^3*(a+b*tan(d*x+c))^3,x,method=_RETURNVERBOSE)
 
output
1/d*(b^3*(1/2*sec(d*x+c)*tan(d*x+c)+1/2*ln(sec(d*x+c)+tan(d*x+c)))+3*a*b^2 
*(1/cos(d*x+c)+ln(csc(d*x+c)-cot(d*x+c)))+3*a^2*b*(-1/sin(d*x+c)+ln(sec(d* 
x+c)+tan(d*x+c)))+a^3*(-1/2*csc(d*x+c)*cot(d*x+c)+1/2*ln(csc(d*x+c)-cot(d* 
x+c))))
 
3.1.37.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 299 vs. \(2 (133) = 266\).

Time = 0.32 (sec) , antiderivative size = 299, normalized size of antiderivative = 2.12 \[ \int \csc ^3(c+d x) (a+b \tan (c+d x))^3 \, dx=-\frac {12 \, a b^{2} \cos \left (d x + c\right ) - 2 \, {\left (a^{3} + 6 \, a b^{2}\right )} \cos \left (d x + c\right )^{3} + {\left ({\left (a^{3} + 6 \, a b^{2}\right )} \cos \left (d x + c\right )^{4} - {\left (a^{3} + 6 \, a b^{2}\right )} \cos \left (d x + c\right )^{2}\right )} \log \left (\frac {1}{2} \, \cos \left (d x + c\right ) + \frac {1}{2}\right ) - {\left ({\left (a^{3} + 6 \, a b^{2}\right )} \cos \left (d x + c\right )^{4} - {\left (a^{3} + 6 \, a b^{2}\right )} \cos \left (d x + c\right )^{2}\right )} \log \left (-\frac {1}{2} \, \cos \left (d x + c\right ) + \frac {1}{2}\right ) - {\left ({\left (6 \, a^{2} b + b^{3}\right )} \cos \left (d x + c\right )^{4} - {\left (6 \, a^{2} b + b^{3}\right )} \cos \left (d x + c\right )^{2}\right )} \log \left (\sin \left (d x + c\right ) + 1\right ) + {\left ({\left (6 \, a^{2} b + b^{3}\right )} \cos \left (d x + c\right )^{4} - {\left (6 \, a^{2} b + b^{3}\right )} \cos \left (d x + c\right )^{2}\right )} \log \left (-\sin \left (d x + c\right ) + 1\right ) + 2 \, {\left (b^{3} - {\left (6 \, a^{2} b + b^{3}\right )} \cos \left (d x + c\right )^{2}\right )} \sin \left (d x + c\right )}{4 \, {\left (d \cos \left (d x + c\right )^{4} - d \cos \left (d x + c\right )^{2}\right )}} \]

input
integrate(csc(d*x+c)^3*(a+b*tan(d*x+c))^3,x, algorithm="fricas")
 
output
-1/4*(12*a*b^2*cos(d*x + c) - 2*(a^3 + 6*a*b^2)*cos(d*x + c)^3 + ((a^3 + 6 
*a*b^2)*cos(d*x + c)^4 - (a^3 + 6*a*b^2)*cos(d*x + c)^2)*log(1/2*cos(d*x + 
 c) + 1/2) - ((a^3 + 6*a*b^2)*cos(d*x + c)^4 - (a^3 + 6*a*b^2)*cos(d*x + c 
)^2)*log(-1/2*cos(d*x + c) + 1/2) - ((6*a^2*b + b^3)*cos(d*x + c)^4 - (6*a 
^2*b + b^3)*cos(d*x + c)^2)*log(sin(d*x + c) + 1) + ((6*a^2*b + b^3)*cos(d 
*x + c)^4 - (6*a^2*b + b^3)*cos(d*x + c)^2)*log(-sin(d*x + c) + 1) + 2*(b^ 
3 - (6*a^2*b + b^3)*cos(d*x + c)^2)*sin(d*x + c))/(d*cos(d*x + c)^4 - d*co 
s(d*x + c)^2)
 
3.1.37.6 Sympy [F]

\[ \int \csc ^3(c+d x) (a+b \tan (c+d x))^3 \, dx=\int \left (a + b \tan {\left (c + d x \right )}\right )^{3} \csc ^{3}{\left (c + d x \right )}\, dx \]

input
integrate(csc(d*x+c)**3*(a+b*tan(d*x+c))**3,x)
 
output
Integral((a + b*tan(c + d*x))**3*csc(c + d*x)**3, x)
 
3.1.37.7 Maxima [A] (verification not implemented)

Time = 0.22 (sec) , antiderivative size = 171, normalized size of antiderivative = 1.21 \[ \int \csc ^3(c+d x) (a+b \tan (c+d x))^3 \, dx=\frac {a^{3} {\left (\frac {2 \, \cos \left (d x + c\right )}{\cos \left (d x + c\right )^{2} - 1} - \log \left (\cos \left (d x + c\right ) + 1\right ) + \log \left (\cos \left (d x + c\right ) - 1\right )\right )} - b^{3} {\left (\frac {2 \, \sin \left (d x + c\right )}{\sin \left (d x + c\right )^{2} - 1} - \log \left (\sin \left (d x + c\right ) + 1\right ) + \log \left (\sin \left (d x + c\right ) - 1\right )\right )} + 6 \, a b^{2} {\left (\frac {2}{\cos \left (d x + c\right )} - \log \left (\cos \left (d x + c\right ) + 1\right ) + \log \left (\cos \left (d x + c\right ) - 1\right )\right )} - 6 \, a^{2} b {\left (\frac {2}{\sin \left (d x + c\right )} - \log \left (\sin \left (d x + c\right ) + 1\right ) + \log \left (\sin \left (d x + c\right ) - 1\right )\right )}}{4 \, d} \]

input
integrate(csc(d*x+c)^3*(a+b*tan(d*x+c))^3,x, algorithm="maxima")
 
output
1/4*(a^3*(2*cos(d*x + c)/(cos(d*x + c)^2 - 1) - log(cos(d*x + c) + 1) + lo 
g(cos(d*x + c) - 1)) - b^3*(2*sin(d*x + c)/(sin(d*x + c)^2 - 1) - log(sin( 
d*x + c) + 1) + log(sin(d*x + c) - 1)) + 6*a*b^2*(2/cos(d*x + c) - log(cos 
(d*x + c) + 1) + log(cos(d*x + c) - 1)) - 6*a^2*b*(2/sin(d*x + c) - log(si 
n(d*x + c) + 1) + log(sin(d*x + c) - 1)))/d
 
3.1.37.8 Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 304 vs. \(2 (133) = 266\).

Time = 0.75 (sec) , antiderivative size = 304, normalized size of antiderivative = 2.16 \[ \int \csc ^3(c+d x) (a+b \tan (c+d x))^3 \, dx=\frac {a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 12 \, a^{2} b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 4 \, {\left (6 \, a^{2} b + b^{3}\right )} \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1 \right |}\right ) - 4 \, {\left (6 \, a^{2} b + b^{3}\right )} \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 1 \right |}\right ) + 4 \, {\left (a^{3} + 6 \, a b^{2}\right )} \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) \right |}\right ) - \frac {2 \, a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{6} + 12 \, a b^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{6} + 12 \, a^{2} b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} - 8 \, b^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} - 3 \, a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{4} + 24 \, a b^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{4} - 24 \, a^{2} b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 8 \, b^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 36 \, a b^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 12 \, a^{2} b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + a^{3}}{{\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )}^{2}}}{8 \, d} \]

input
integrate(csc(d*x+c)^3*(a+b*tan(d*x+c))^3,x, algorithm="giac")
 
output
1/8*(a^3*tan(1/2*d*x + 1/2*c)^2 - 12*a^2*b*tan(1/2*d*x + 1/2*c) + 4*(6*a^2 
*b + b^3)*log(abs(tan(1/2*d*x + 1/2*c) + 1)) - 4*(6*a^2*b + b^3)*log(abs(t 
an(1/2*d*x + 1/2*c) - 1)) + 4*(a^3 + 6*a*b^2)*log(abs(tan(1/2*d*x + 1/2*c) 
)) - (2*a^3*tan(1/2*d*x + 1/2*c)^6 + 12*a*b^2*tan(1/2*d*x + 1/2*c)^6 + 12* 
a^2*b*tan(1/2*d*x + 1/2*c)^5 - 8*b^3*tan(1/2*d*x + 1/2*c)^5 - 3*a^3*tan(1/ 
2*d*x + 1/2*c)^4 + 24*a*b^2*tan(1/2*d*x + 1/2*c)^4 - 24*a^2*b*tan(1/2*d*x 
+ 1/2*c)^3 - 8*b^3*tan(1/2*d*x + 1/2*c)^3 - 36*a*b^2*tan(1/2*d*x + 1/2*c)^ 
2 + 12*a^2*b*tan(1/2*d*x + 1/2*c) + a^3)/(tan(1/2*d*x + 1/2*c)^3 - tan(1/2 
*d*x + 1/2*c))^2)/d
 
3.1.37.9 Mupad [B] (verification not implemented)

Time = 5.20 (sec) , antiderivative size = 581, normalized size of antiderivative = 4.12 \[ \int \csc ^3(c+d x) (a+b \tan (c+d x))^3 \, dx=\frac {a^3\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2}{8\,d}-\frac {{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4\,\left (\frac {a^3}{2}+24\,a\,b^2\right )-{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2\,\left (a^3+24\,a\,b^2\right )+{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^5\,\left (6\,a^2\,b-4\,b^3\right )-{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3\,\left (12\,a^2\,b+4\,b^3\right )+\frac {a^3}{2}+6\,a^2\,b\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}{d\,\left (4\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^6-8\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4+4\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2\right )}+\frac {\ln \left (\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\right )\,\left (\frac {a^3}{2}+3\,a\,b^2\right )}{d}-\frac {\mathrm {atan}\left (-\frac {\left (3\,a^2\,b+\frac {b^3}{2}\right )\,\left (6\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\left (3\,a^2\,b+\frac {b^3}{2}\right )+6\,a^2\,b+b^3-\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\left (a^3+6\,a\,b^2\right )\right )\,1{}\mathrm {i}-\left (3\,a^2\,b+\frac {b^3}{2}\right )\,\left (6\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\left (3\,a^2\,b+\frac {b^3}{2}\right )-6\,a^2\,b-b^3+\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\left (a^3+6\,a\,b^2\right )\right )\,1{}\mathrm {i}}{2\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\left (36\,a^4\,b^2+12\,a^2\,b^4+b^6\right )-\left (3\,a^2\,b+\frac {b^3}{2}\right )\,\left (6\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\left (3\,a^2\,b+\frac {b^3}{2}\right )+6\,a^2\,b+b^3-\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\left (a^3+6\,a\,b^2\right )\right )-\left (3\,a^2\,b+\frac {b^3}{2}\right )\,\left (6\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\left (3\,a^2\,b+\frac {b^3}{2}\right )-6\,a^2\,b-b^3+\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\left (a^3+6\,a\,b^2\right )\right )+6\,a\,b^5+6\,a^5\,b+37\,a^3\,b^3}\right )\,\left (a^2\,b\,6{}\mathrm {i}+b^3\,1{}\mathrm {i}\right )}{d}-\frac {3\,a^2\,b\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}{2\,d} \]

input
int((a + b*tan(c + d*x))^3/sin(c + d*x)^3,x)
 
output
(a^3*tan(c/2 + (d*x)/2)^2)/(8*d) - (tan(c/2 + (d*x)/2)^4*(24*a*b^2 + a^3/2 
) - tan(c/2 + (d*x)/2)^2*(24*a*b^2 + a^3) + tan(c/2 + (d*x)/2)^5*(6*a^2*b 
- 4*b^3) - tan(c/2 + (d*x)/2)^3*(12*a^2*b + 4*b^3) + a^3/2 + 6*a^2*b*tan(c 
/2 + (d*x)/2))/(d*(4*tan(c/2 + (d*x)/2)^2 - 8*tan(c/2 + (d*x)/2)^4 + 4*tan 
(c/2 + (d*x)/2)^6)) + (log(tan(c/2 + (d*x)/2))*(3*a*b^2 + a^3/2))/d - (ata 
n(-((3*a^2*b + b^3/2)*(6*tan(c/2 + (d*x)/2)*(3*a^2*b + b^3/2) + 6*a^2*b + 
b^3 - tan(c/2 + (d*x)/2)*(6*a*b^2 + a^3))*1i - (3*a^2*b + b^3/2)*(6*tan(c/ 
2 + (d*x)/2)*(3*a^2*b + b^3/2) - 6*a^2*b - b^3 + tan(c/2 + (d*x)/2)*(6*a*b 
^2 + a^3))*1i)/(2*tan(c/2 + (d*x)/2)*(b^6 + 12*a^2*b^4 + 36*a^4*b^2) - (3* 
a^2*b + b^3/2)*(6*tan(c/2 + (d*x)/2)*(3*a^2*b + b^3/2) + 6*a^2*b + b^3 - t 
an(c/2 + (d*x)/2)*(6*a*b^2 + a^3)) - (3*a^2*b + b^3/2)*(6*tan(c/2 + (d*x)/ 
2)*(3*a^2*b + b^3/2) - 6*a^2*b - b^3 + tan(c/2 + (d*x)/2)*(6*a*b^2 + a^3)) 
 + 6*a*b^5 + 6*a^5*b + 37*a^3*b^3))*(a^2*b*6i + b^3*1i))/d - (3*a^2*b*tan( 
c/2 + (d*x)/2))/(2*d)